24小时服务热线:

138-1211-9616

东欧赌场

咨询热线:

0510-86395391

邮箱:zhongkai-jixie@qq.com

传真号码:0510-86395392

地址:江阴市祝塘镇镇南路65号

高剪切均质机设计

作者:东欧赌场 日期:2021-01-18 08:26 人气:

  高剪切均质机设计_工学_高等教育_教育专区。免费机械论文,机械毕业设计,毕业论文,三维建模,CAD图纸

  1 绪论 剪切式均质技术作为一种新型微米技术,已广泛应用于食品、医药、轻工、微生物等 诸多行业,并得到迅速发展,已成为这些行业对有关流体、半流体产品品质所必不可少的 工艺过程。 国外早在 30 年前就产生并使用均质机,且应用于生产。目前,已有美国、日本、德 国等 10 多个国家生产均质机。剪切式均质机作为均质机械中的佼佼者,也被广泛的认识 和研究。自从 1948 年德国 FLUKO 公司首次发明了应用高剪切原理制成分散乳化设备,高 剪切分散乳化设备已经出现了多种系列产品,在世界均质机械行业处于领先地位。近 40 年来,国外,特别是欧洲一些国家在高剪切分散均质机行业得到迅速发展,并在很多领域 发挥着重大作用,如化装品、制药、食品、涂料、黏合剂等。国外所研究制造的剪切式均 质设备基本上上是采用定一转子型(stator-rotor)结构作为均质头,在电机的高速驱动 下(300-10000r/min) ,物料在转子与定子之间的间隙内高速运动,形成强烈的液力剪切 和湍流,使物料在同时产生的离心、挤压、碰撞等综合作用力的协调作用力下,得到充分 的分散、乳化、破碎,达到要求的的效果。美国和德国在剪切式均质机的研究和开发方面 都取得了显著进展。如美国 IKA-WERKE GMHB CO.KG 生产的多系列分散均制设备;美国 ROSS 公司研制的高剪切混合乳化机;德国 IKA-MASCHINENBAU 公司研制的 ULTRA 分散机;德国 YSTRAL 公司生产的 X40 型分散搅拌机;德国公司研制的系列高剪切分散乳化剂、管线式高 剪切分散乳化剂、管式分散乳化剂、间歇式高剪切与间歇式无轴承分散乳化剂、高效强力 分散乳化剂等世界领先高科技产品。 我国的均质机研究产品是从 50 年代个别厂家开始的,最早是上海烟草机械厂仿制美 国产品,直到 80 年代才开始逐渐的生产均质机,而且大多是传统的高压均质设备。随着 国外剪切式均质机的迅速发展,近年来,国内许多科研人员,制造和使用厂家也开始重视 对剪切式均质机的研究工作。目前,已建立了与国外厂商联营、合资研制生产剪切式均质 机的公司。如上海菲鲁克(FLUKO)机电设备有限公司;中美合资南通罗斯(ROSS)混合 设备有限公司等。 现在国内有许多厂家开始生产高剪切均质机, 如东市长江机电有限公司、 上海环保设备总厂、上海威宇机电有限公司、上海市化工装备研究所生产的集混合、分散、 乳化、溶解、粉碎等功能为一体的系列剪切式均质机。 1.1 高剪切均质机的均质原理 剪切均质机基于超剪切原理,实现固相的微化和液相的乳化。目前采用剪切式均质机 主要工作部件为一级或多极的相互啮合的定转子又有数层齿圈。其均质乳化有以下方面: 1 液力剪切作用 液力剪切是指高速流动的流体本身会对流体内粒子产生强大的剪切作用,而且由于高 速流动产生剧烈的微湍流,在湍流边缘出现很高的局部速度梯度,处于这种局部速度梯度 下的粒子会受剪切而微粒化,液力剪切分层流剪切和湍流剪切。在层流区域,流体在定转 子槽道内流动时,流体内的最大流速及所受到的最大剪切力与流体流动方向上的压力梯度 成正比。当施以周期性高频脉动压力梯度时,最大速度在槽道壁面与机理道中心之间,偏 离中心,且频率增大,最大速度增大,且向壁面趋近,剪切力增大。流体在同轴圆筒之间 成为旋转流,由于两圆筒速度不同,间隙内流体层之间存在速度梯度,产生剪切力。如圆 江南大学毕业论文 筒设为定子和转子,在定转子间隙很小情况下,转子速度越大,定转子间隙越小,则最大 剪切越大。而对于纤维物料处理时,在由高速旋转的定转子形成的流场内,由于流动着的 流体流于齿槽边界接触、 不同速度运动的两股流体相互接触产生剧烈的湍流。 湍流状态下, 由于不断变化的流动速度和由此产生的脉动压力作用于分散向颗粒表面,进而产生强烈的 剪切作用力。湍流强度越大,流体所受的剪切作用越大 ,另外,湍流运动的脉动特性使 其具有传递扩散性,从而使物料的粉碎过程中能更产生很好的分散、混合效果。可以看出, 当速度达到一定值时,流体各层之前产生的剪切应力大于纤维物料的临界剪切应力,从而 使纤维物料破碎。 液力剪切是高速流动的流体本身对流体内粒子产生强大的剪切作用,而且由于高速流 动产生剧烈的微湍流,在湍流边缘出现很高的局部速度梯度,处于这种局部速度下的粒子 会受剪切而微粒化,液力剪切分层流剪切与湍流剪切,高黏度物料一般处于层流状态,低 黏度物料一般处于湍流状态,果蔬汁物料处于两者之间。 2 高频压力波作用 高频压力波主要有空穴效应,高频压力振动,可使颗粒表面周期性膨胀、压缩,致使 固相与液相颗粒破裂。空穴效应是由于大量气泡随压力升高而瞬间溃灭而产生的高速微射 流,速度可达到 100m/s 到 300m/s 这一高速微射流产生的脉冲压力接近 200Mpa 这就是空 穴效应。高频压力振动是由于定转子齿槽时开时闭时产生的,高频压力波对果疏汁等含液 -液相的物料可达到很好的均质效果。 3 机械撞击、剪切作用 对于含固体颗粒物料的粉碎均质,机械剪切与撞击起主导作用,转子带有叶高速旋转 产生强大的离心力场,在转子中心形成很强的负压区,料液(液液或液固混合物)从定转 子中心被吸入,在离心力地作用下,物料由内圈向外圈运动,线速度越来越高,形成极大 的压力梯度场,在该场中,物料受机械力、流体力作用下,产生强大的剪切、摩擦、撞击 以及物料间的相互碰撞、摩擦实现固相在微粒与液相的乳化。 图 1?1? 定子—转子结构示意图 第? 2? 页 共? 22? 页 图 1?2? 高剪切粉碎机定转子示意图 其工作原理为:物料经初粉碎后,与大量的水混合物,使物料有了一定的流动性。转 子带有叶片高速旋转产生强大的离心力场,在转子中心形成的负压区,料液(纤维物料与 流体混合物)从定转子中心被吸入,在离心力作用下,物料由中心向四周扩散,在向四周 扩散过程中,物料首先受到叶片的搅拌、并在叶片端面与定子齿圈内侧窄隙间受到剪切, 然后进入内圈转齿与定齿的窄小的间隙内,在机械力和流体力学效应的作用下,产生很大 的剪切、摩擦、撞击以及物料间的相互碰状和摩擦作用而使物料破碎。随着转齿的线速度 由内圈向外圈逐渐增高,粉碎环境不断改善,物料在向外圈运动过程中受到越来越强烈的 剪切、摩擦、冲击、碰撞等作用而被粉碎得越来越细。以下是定子和转子的实物图。 图 1-3 定子—转子实物图 1.2 电动机与转轴连接形式 通常,带传动用于中小功率电动机与工作机械之间的动力传递。其优点主要有:适用 于中心距较大的传动;带具有良好的挠性,可缓冲和冲击、吸收振动;过载时带与带轮间 回出现打滑,打滑虽使传动失效,但可防止损坏其他零件;结构简单、成本低廉。当然他 也有不少缺点;传动的外轮廓尺寸较大;需要张紧装置;由于带的滑动,不能保证固定不 变的传动比;带的寿命较短;传动效率较低。在此生产线中设计使用的高剪切均质机,其 功率不算大,所以其整个机体的尺寸也较小。联轴器的结构简单,安装方便,且效率高。 综合以上各个方面,可以将电动机轴和转轴用联轴器直接连接起来,做成卧式结构, 这样其传动效率较高,且使其专用空间减少,从而大大提高机器工作效率。如图 1-4 所示。 江南大学毕业论文 图 1?4? 电动机遇转轴联结简图 2 均质机的设计 2.1 电动机的选择 电动机的类别有一般异步电动机、变速异步电动机、防爆异步电动机等,在此选用一 般异步电动机即可满足工作要求. 电动机外壳结构形式:在本设计的生产环境中,可能有水滴落、飞溅,容易造成电机烧 坏;且空气中经常存在叫多的灰尘,所以在此电动机的外壳形式选择封闭式中的自扇冷却 式结构,其在本身转轴上(封闭部分以外)装有风扇,以冷却机身. 一般异步电动机中包括 Y 系列(IP23)三相异步电动机、 系列(IP44)三相异步电动机、 Y YH 系列高转差率三相异步电动机和 YEJ 系列电磁制动三相异步电动机. YH 系列高转差率三相异步电动机和 YHJ 系列电磁制动三相异步电动机均是 Y 系列 (IP44)电机的派生产品,而对于 Y 系列(IP44)三相异步电动机,此电动机为封闭自扇冷式鼠 笼型三相异步电动机,效率高、节能,堵转转距高、噪声低、振动小,运行安全可靠.能防止 灰尘、铁屑或其他杂务侵入电机内部;具有与 Y 系列相同的用途于驱动无特殊要求的各种 机械设备,如水泵、鼓风机、金属切削机床及运输机械等)外,还能适用于灰尘多、水土飞 溅的场所,如球磨机、碾米机、磨粉机、脱谷机及其他农用机械、食品机械、矿山机械等. 已知电动机的驱动功率为 22KW.查机械设计手册(1)第九章,在此处选用 Y180M-2 型电 动机,机座不带底脚,端盖不带凸缘.转速为 2940r/min.如图 2-1 所示, 第? 4? 页 共? 22? 页 图?2?1? 电动机简图 2.2 轴的设计与校合 2.2.1 轴的设计? D ? C?3? p? n? 式中 C-由轴的材料和承载系数确定的常数 P-轴传递的功率,KW n-轴的转速,r/min 电机和轴之间使用一弹性联轴器相连? 轴用滚动球轴承支撑? h1 ? 0?992? .? h 2 ? 0?99? .? 轴选用材料:1Cr17Ni2,取 C=140(不锈钢 C 一般为 125-145) , P=?P? ? h1 ? h 2? = 22?? 0?992?? 0?99?= 21?6?KW? ,n=2940r/min, .? .? .? 机 所以? D?? 140?? 3 21?6? .? = 27?2? .? mm? 2940? 考虑到轴上要开键槽,所以直径放大 7%左右 所以 D=27.2+27.2 ? 7%=29.1mm 又因为轴上每个转子处要开两个键槽,所以去=取 D=35mm 2.2.2 轴的校合 2.2.2.1 轴的强度校核 轴的受力情况如图 2-2 所示,未注单位为 mm,其中重力?G? = 70?N?,?G? = 98? ,?G? = 30?N? ; N? 3? 1 2? 由 于 轴 的 转 速 较 高 , 所 以 转 子 产 生 的 偏 心 力 得 加 以 考 虑 , 偏 心 力? F? = mr?? 2? = 5?? 10?-3? ? 46?? 10?-3? ? (? p )?2? = 21?8?N?,其中 m 为转子的偏心质量,?r?. 为偏心距,所 w 98? .? 1 以?F? = F? = F? = 21?8? 。 .? N? 2 3? 1? 江南大学毕业论文 A F1 F2 F3 G1 Fa B G2 Fb G3 图?2?2? 轴的受力简图 18.9N.m -2.13N.m -44.1N.m 图?2?3?轴的弯矩和成图 -53.6N.m -107.2N.m -160.8N.m 图?2?4? 轴的扭矩图 轴的材料为 1Cr17Ni2,,经淬回火后,其许用应力 [s -1b?]?= 230? Mpa?,做出轴的弯距图,如图 2-3 所示,则 M=-44.1?N · m? 轴的转矩:? p? 22? T =?9550? = 9950?? = 107?2?N? · m? .? n? 2940? 轴的扭矩图如图 2-4 所示,则 危险截面的当量弯矩:从图可见,若将此轴看作 D=35mm 的等直径轴,则轴承所支撑的 A 处截 面最危险,其当量弯矩为:? M?e = M?2? + (? T?)?2? a 第? 6? 页 共? 22? 页 如认为轴的扭切应力是脉动循环变应力,取折合系数,代入上式可得:? M?e =? 44?1? + (? .? ? 107?2? 2? = 78?0?N? · m? .? 2? 0?6? .? )? .? 所以 s e? = M?e? 78?0?? 10?3? .? = = 18?2? .? Mpa? [s -1?b?]? 3? 0.? d? 1? 0?1? 35? .? ? 3? 所以此轴符合强度要求. 2.2.2.2 轴的刚度校核 将轴的受力进行简化,如图 2-5 所示, P=94.4N A G2 Fa B G3 Fb 443mm 图?2?5? 轴的受力简图 当量作用力 P 处的挠度最大,且最大挠度? f? = - pl?3 p? 3? EI? ,其中?l?p? = 443mm?E 为材料的弹性摸量, d?4?. 64? 5? 查得 1Cr17Ni2 在 20℃时的 E 为?2.? ? 10? Mpa?;当轴为等直径时,?I = 06? p 求轴的当量直径;查机械设计手册④得不等直径的阶梯轴的当量直径?d?m? 的计算公式为 d?m? =? L? l? i? 4? i? n ? d? i?=1? 式中? l? —阶梯轴 i 段的长度;? i? d?i? —阶梯轴 i 段的直径 L—两支承之间的长度; 当载荷作用于两支承之间时,L=1; 当载荷作用于两悬臂时,L=1+K; K—轴的悬臂长度. 所以 江南大学毕业论文 d?m? = 917? = 35?4? .? mm? 24? 150? 93? 131? 17? 14? + 4? + 4? + 4? + 4? + 4? 16?4 35? 42? 50? 55? 60? 94?4?? 443? .? 3?? 2?06?? 10? ? .? 5 所以? f? = - ? 35?4? .? 64? p = -0?2? .? mm? 4? 因为转子与定子每一圈齿之间的间隙为 0.5mm,所以起刚度也符合要求. 2.3 轴承的选用 轴承分为滚动式轴承和滑动式轴承两大类,其中滚动轴承按滚动体的形状又可分为球 轴承和滚子轴承,滚子轴承中又包括圆住滚子轴承、滚针轴承、圆锥滚子轴承和调心滚子 轴承;滚动轴承可分为干摩擦轴承和含油轴承等. 2.3.1 轴承型号选用 与滑动轴承比,滚动轴承具有摩擦阻力小、启动灵敏、效率高、润滑简便和易于互换 等优点; 本质均机转轴转速较高,载荷不大,主要承受径向载荷,但其旋转精度要求较高,且支 承刚度较高,所以可成对采用深沟球轴承. 当轴承内径相同时,外径愈小,滚动体愈小愈轻,运转时滚动体作用于外圈滚道上的离 心力愈小,因此更合适与高速下工作,但同时要承受一定的载荷,所以直径系列选用 3(中) 系列. 综上考虑,选用深沟球轴承 632. 2.3.2 润滑和密封 润滑过程中,轴承内部各元件见,均存在不同程度的相对滑动,从而导 润滑的作用 润滑的主要目的是; 1)减小摩擦发热,避免工作温度过高 2)降低磨损 3)防止锈蚀 4)密封(脂润滑) d 代表轴承内径(mm),a 代表轴承的转速(r/min), 当?d?n? (1.5~2)??10?5? mm · r?/?min?时,一般可采用润滑脂润滑, 在此? d?n? =60? 2940=17640?mm · r?/?min?,所以可以选用脂润滑. 且脂润滑的优点在于:油膜强度高;油脂粘附性好,不易流失,使用时间较长;密封简单,能 防止灰尘、水分和其他杂务进入轴承.此外,润滑脂的不足或过多,都会导致轴承工作中升 温增大,磨损加快,故润滑脂的填充量要适度.一般,以填充量占轴承与外壳见的 1/3~1/2 为宜.考虑其工作环境相对还不错,且操作方便,所以对轴承的密封可采用防尘盖. 所以选用轴承为 6312—2Z. 第? 8? 页 共? 22? 页? 致摩擦发热和元件的磨损.因此工作中必须对轴承进行可靠的润滑. 2.3.3 轴承的固定 轴承的固定方式有两端固定支承、固定—游动支承、两端游动支承.在此,周主要用于 传递扭矩,轴承所受的轴向和径向力都很小,且由于安装了机械密封,为防止其的损坏,要 求轴基本上不产生轴向位移,由此对其轴承的固定采用固定—游动的方式.其固定方式如 图 2-6 所示。 图 2?6? 轴承固定方式图 2.4 联轴器的选用 2.4.1 序号 联轴器名称 转距范围/N · m 轴径范围/mm 最高转距 /?r?·?min 许用 相对 位移 -1? 几种联轴器的比较 1 凸缘联轴器 (GB/T5843—1986) 10~20000 10~180 13000~1400 2 弹性套柱销联轴器 (GB/T4323—1984) 6.3~16000 9~170 8800~1150 3 梅花型弹性联轴器 (GB/T5272—1985) 16~25000 12~140 15300~1100 轴向 /mm 径向 /mm 角向 要求两轴严格精确对 中 较大 0.2~0.6 1°30′~0°30′ 1.2~5.0 0.5~1.8 1°~2° 结构简单, 维修方便, 有缓冲减振性能,安 全可靠,耐磨,对加 工精度要求不高,适 应范围广,可用于各 种中小功率的水平和 垂直传动轴系,工作 特点及应用说 明 机构简单, 工件可靠, 装拆方便,刚性好, 传递转距大,但不能 吸收冲击。当两轴对 中精度较低时,将引 起较大的附加载荷, 适用于工件平稳的一 结构紧凑, 装配方便, 具有一定的弹性和缓 冲性能,补偿两轴相 对位移不大,当位移 量太大时,弹性件容 易损坏,主要用于一 般的中小功率传动轴 江南大学毕业论文 般传动,高速传动时 需要有高的对中和制 造精度 系,工作温度-20~ 70℃ 温度-35~80℃ 联轴器型号的选用 p? 22? 轴传递的转矩? T =?9550? = 9550?? = 107?2?N? · m? .? n? 2940? 查机械设计基础 表 17-1,得? K?A? =?1.? 5? 2.4.2 所以?T?1? =? K?A?T? = 1?5?? 107?2?= 160?8? · m? .? .? .? N? c 由机械设计手册④ 表 41.5-34 选取梅花型弹性联轴器 ML6。 2.5 密封选用 密封可以分为静密封和动密封两大类。静密封主要有垫密封、密封胶密封和直接接触 密封三大类。动密封可以分为旋转密封和往复密封两种基本类型。 目前,常用于旋转轴密封的有机械密封、填充密封和油封。填充密封主要作动密封, 它广泛用做离心泵、压缩机、真空泵、搅拌机和船舶螺旋桨的转轴密封等。机械密封又称 端面密封,是旋转轴用动密封,被广泛用于石油、化工、冶金、航空、原子能等工业中。 油封也可用于旋转轴密封。 2.5.1 2.5.1.1 机械密封 机械密封原理 图 2?7? 机械密封原理简图? 1?? 静环,2?动环,3?动环密封圈,4?推环? 5?传动座,6?弹簧,7?静环密封圈,8?静环圈 在总装图中可以看到,机械密封采用了外装形式,其定位依靠甩水环和套筒,均质腔 第? 10? 页 共? 22? 页 底盘中心有凸缘回转台,以及用来排除液料的涡轮结构防止了大部分的含颗粒料液进入, 避免了因介质压力与弹簧力的方向相反而相互县的泄露。但是,当启动时,弹簧力不变, 端面受力太大,由于摩擦副尚未形成液面,端面上比压过大容易磨伤密封面。在这里采用 机械密封将容易泄露的轴向密封改变为较难泄露的静密封和端面径乡接触的动密封。减少 了泄露量,降低了对轴的精度和表面粗糙的要求,由于减少了轴的接触面积,使得轴不易 受磨损。 2.5.1.2 机械密封与成型填料密封的比较 机械密封与软填料密封相比较,有如下优点:密封可靠,在长期的运行中,密封状态 稳定,泄露量很小,按粗略统计,其泄露量一般仅为软填料密封的 1/100;使用寿命长, 在油、水类介质中一般可达 1~2 年或更长时间,在化工介质中通常也能达半年以上;摩 擦功率消耗小,机械密封的摩擦功率紧为软填料密封的 10%~50%;轴或轴套基本上不受磨 损;维修周期长,端面磨损后可自动补偿,一般情况下,无须经常的维修;抗振性好,对 转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;适用范围广,机械密封用于低温、高温、 真空、高压、不同转速,以及各种腐蚀性介质和含磨粒介质等的密封。但其也有一些缺点: 结构较复杂,对制造加工要求高;安装与更换比较麻烦,并要求工人有一定的安装技术水 平;发生偶然性事故时,处理较困难;一次性投资高。 本均质机在工作中要求密封处基本上无泄露,一旦泄露,会对机内的物料造成污染。 综上考虑,在此选用机械密封。 2940 ? 2? p 对于轴:?w = = 98? rad?/?s? p 60? 机械密封处线速度:?v?= r? = 21? 10?-3 ? 98? = 6?465? /?s? w ? p .? m? 2.5.1.3 机械密封结构形式的选择 对本均质机调查后可发现 ①介质为液体, 起压力为 2 公斤, 温度在 0℃~80℃范围内, 轴径为 42mm 转速为 2940r/min。 ②介质特性—介质压力低,无腐蚀性,无固体颗粒及纤 维杂质,且不宜汽化和结晶。 ③主机工作特点与环境条件—连续操作;主机安装在室内; 周围气氛性质良好,温度变化不大。 ④几乎不允许有泄露,并且对泄露方向有要求;寿 命尽量长些,从而降低更换次数,且可靠性要高些。 综上考虑选用: 2.5.1.4 MYV1=142 型机械密封, 机械密封的冷却与润滑 机械密封的冷却与端面润滑由循环请水系统保证。循环水流量由机体外管道阀门控 制。少量泄露的清水被甩水环甩至轴承座支架板,经由排水管排出。 2.5.2 2.5.2.1 油封的选用 油封与其它密封装置的比较 油封与其它密封装置比较有下列优点:①结构简单、容易制造。简单油封一次便可以 模压成型,即使最复杂的油封,制造工艺不复杂。金属骨架油封也只需要经过冲压、胶接、 镶嵌、模压等工序即可将金属与橡胶组成所需要求的油封。 ②重量轻、耗材少。每种油 封都是薄壁的金属件与橡胶件的组合,其材料耗费极少,因而每个油封的重量很轻。 ③ 油封的安装位置小,轴向尺寸小,容易加工,并使机器紧凑。 ④密封性能好,使用寿命 江南大学毕业论文 较长。对机器的振动和主轴的偏心都有一定的适应性。 ⑤装拆容易、检修方便。 ⑥价格 便宜。 油封对内可封油,对外可防尘。 油封的缺点在于不能承受高压,但机械密封处由油所产生的压力在两公斤左右,油封 足可以承受。 2.5.2.2 油封的工作范围 表 2-1 油封的工作范围表 工作压力 ~0.3Mpa 密封面线速度 低速型 4m/s 高速型 4~15m/s 工作温度 -60~150℃(与橡胶种类有关) 适用介质 油、水及弱腐蚀性液体 寿命 500~2000h 油封处线速度:?v?= r? = 25?? 10?-3 ? 98? ? 7?70? /?s? w p .? m? 2.5.2.3 油封的结构 把冲压好的金属骨架包在橡胶之中,成为内包骨架型,其 油封的工作范围如表 2-1 所示 在此选择橡胶骨架结构 2.5.2.4 油封材料 制造工艺稍微复杂一些。但刚度好,易装配,且钢板材料要求不高。 鉴于油封处于大气和油的环境中,所以要求材料的耐油性、耐大气老化性能良好;同 时它常遇灰尘、水,且有很高的转速,因此要求耐磨性和耐热性良好。丁腈橡胶的耐油性 能优异。 所以选择丁腈橡胶作为油封材料。 2.5.2.5 油封的润滑 安装时对油封唇部涂润滑脂。因为锂基润滑脂的耐热、耐水性能好,温度变化时稠度 很少变化,适用温度范围广,遇水也不降低其润滑性能,所以油封的润滑选用锂基润滑脂。 2.5.2.6 密封圈 用做油封的旋转轴唇形密封圈选用内包骨架有副唇的密封。对于外部环境多灰尘、雨水及 杂质等场合,应采用有副唇的密封圈。 综上所述,选用 GB9877—88 中的 FB 型油封。 2.6 定子、转子、叶片结构与尺寸的确定 2.6.1 定子与转子的设计 纺织浆料的均质步骤,在整个生产工序中非常重要,此工序中的主要部件—高剪切均 质机,其中的关键部件为定—转子部件,其结构的优劣对生产的产品的质量有非常大的影 响。 2.6.1.1 定子的设计 定子的材料为 ZG0Cr13Ni4Mn,其结构与尺寸如图 2-8 及表 2-2 所示, 第? 12? 页 共? 22? 页 30 6 16 4 3 7 29.5 40 图2-6-1-1 定子结构图 图?2?8? 定子结构图 表 2-2 定子结构主要尺寸 名称 数 值 定子直径 198 定子高 40 齿高 29.5 齿 圈 槽 齿圈距 深 30 7 3 6 (mm) 此定子装拆方便,且盘上开了一个键槽,利用键来防止其在剪切过程中转动。 2.6.1.2 转子的设计 转子的材料也是 ZG0Cr13Ni4Mn,其结构与尺寸如图 2-9 及表 2-3 所示, 齿间距 齿厚 图 2-9 转子结构图 江南大学毕业论文 表 2-3 转子结构主要尺寸 名称 数值 (mm) 转子与叶片做成分离式,便于装拆。 2.6.2 叶片的设计 叶片的材料也是 ZG0Cr13Ni4Mn,叶片的设计参考离心泵叶片的设计,考虑到处理的是 含固体颗粒的固-液相的液料,因此将叶片设计成开启式后弯叶片涡轮,这种涡轮直径小, 叶片宽,转速高,具有高剪切力和较强的循环能力,同时,由于中间无圆盘,上下液体流 动通畅,排除性能好,且叶片不易磨损,并且要求叶片弯曲公式: 1?3?? [sin(?t )?- t?* cos(? )? , .? t? ]? t 值范围为 0-38%,其结构与尺寸如图 2-10 及表 2-4 所示, 转子直径 137 转子高 45 齿高 29.5 齿圈槽深 30 齿圈距 7 齿间距 3 齿厚 6 7.5 图 2?10? 叶片结构图 图2-6-2-1 叶片结构图 叶片总高 48 叶片高 30 叶片数目 5 表?2?4? 叶片结构主要尺寸 名称 数值 (mm) 叶片直径 85 第? 14? 页 共? 22? 页 2.6.3 叶片和转子的装配关系 叶片和转子均做成分离式,其装配非常方便,其装配关系如图 2-11 所示 图 2-11 叶片和转子装配 2.7 固定叶片和转子的键的选用与效核 b l 2.7.1 键联结。 2.7.2 键的选用 因为 D=35mm,普通平键中 A 型键在槽中固定良好,所选用键? ? 45? GB1096—79 较松 10 键的效核 h/2 如图 2-12 所示,查机械设计基础表 10-10,得 s p? = 130Mpa? [t ]?= 50? ,? Mpa?键的挤压强 [ ] 江南大学毕业论文 度效核: s p? =? 4? T 4?? 107?2?? 10?3? .? = = 22?7?Mpa? s p? .? 1?5? .? dhl? 1?5?? 35?? 8?? 45? .? [ ]? 所以所选键的挤压强度符合要求。 键的剪切强度效核: t =? 3? 2? T? 2?? 107?2?? 10? .? = = 9?08? .? Mpa? [t ] 1?5? .? bld? 1?5?? 10?? 45?? 35? .? 所以所选键的剪切强度也符合要求 综上得,所选键符合要求。 2.8 固定叶片和转子的螺栓的效核 一队转字齿盘与叶片用 5 个均布的螺栓联结,螺栓?M?8 ??16? /?T?5783?- 2000?,材料位 GB? 不锈钢。 各螺栓受力? 式中 所以? F? = B T? r? + r? + r? + r? + r? 1? 2? 3? 4? 5? T—轴所传递的转矩;r—各螺栓中心线与转轴中心线的距离, F? = B? 3 107?2?? 10? .? = 640?N? 33?5?? 5? .? 单个螺栓预紧力? F? = p K?f? F? B? mf? , 式中? K?f? —可靠性系数,取?K?f? =?1.? ; 1? M—接合面数目,m=1; F—接合面摩擦系数,取 f=0.15, 1.? ? 640? 1? 所以? F?p? =? = 4693?33? .? N? 1? 0?15? ? .? s= 1?3? p .? F? p 4? d?2? 1? 式中? d? —螺纹小径, 1? 所以? s= 1?3?? 4693?33? .? .? p 4? = 168? Mpa?, ? 6?8? .? 2 又 [s ]?= s s , S? 第? 16? 页 共? 22? 页 s s —材料屈服极限,?s s =900Mpa; S—紧螺栓联接的安全系数,取 S=5, 900 所以 [s ]?= = 180? Mpa?, 5? s = 168Mpa? [s ]?= 180? Mpa?, 所以此处固定所用的螺栓符合强度要求。 2.9 支座的设计 注意的一些问题有由于铸铁的铸造性能好、 价廉和吸振能力强, 此支座采用铸造完成。 设计中要注意的一些问题有: 支座的设计主要应保证刚度、强度及稳定性。 1 刚度 2 强度 3 稳定性 评定大多数支座工作能力的主要准则是刚度。 强度是评定重载支座工作性能的基本准则。 支座受压结构及受压弯结构都存在失稳问题。 此外,再满足强度和刚度的前提下,支座设计应尽量满足其设计中的一般要求: 1 支座的重量应要求轻、成本低。 2 抗振性好。把受迫振动限制在允许范围内。 3 噪声小。 4 温度场分布合理,热变形对精度的影响小。 5 结构设计合理,工艺性良好,便于铸造、焊接和机械加工。 6 结构力求便于安装与调整,方便修理和更换零部件。 7 造型好。使之既适用经济,又美观大方。 参考已有均质机的支座设计,本均质机支座的结构如图 2-13 所示, 图?2?13? 指座结构图 2.10 物料 2 进口、出口尺寸的确定 本均质机的处理量约为? m?3? /?h? 15? (包括水在内) Q = pr?2? ?n ? t?,Q—处理量,? 3? /?h?; ,由? ? m? 江南大学毕业论文 r—进口内径,m;n —舞料进口流速,m/s; t—时间,s. 有? r? = Q? 15 = = 0?0210? = 21?0? .? m? .? mm? pnt? p ? 3?? 3600? 考虑到物料进去后有个加速,所以取 d=45mm。查机械手册(新版)1 此处内螺纹选用圆柱 内螺纹 G1 1/2; 对于物料出口,查机械设计手册(新版) 1 选用圆柱外螺纹 G1 1/4。 2.11 转轴的加工工艺 转轴的机械加工工艺过程如表 2-5 所示。 2.12 设备安装、调试与操作 在零件装配中注意以下几点要求: ① 零件在装配前必须清理和清洗干净,不得有锈蚀、切屑、油圬、着色剂和灰尘。 ② 装配完成后,拨动联轴器,若出现卡死现象,金属碰撞声等,检查后进行重新装配。 ③ 筒体外表涂黄色油漆。 再按照总装配图进行装配,在装配中注意以下几点要求: ① 零件在装配前必须清理和清洗干净,不得有氧化皮、锈蚀、切屑、油圬和灰尘等。 ② 装配前应对零、部件的主要配合尺寸,及相关精度进行复查。 ③ 装配完成后,拨动联轴器,若出现卡死现象,金属碰撞声等,进行重新装配。 ④ 泵入清水循环润滑冷却,加入适量的水进行二十分钟的试验,运转平稳,无冲击。 要求各联接件、紧固件不松动。密封处、结合处无泄露。 ⑤ 底座和机身涂黄色油漆。 第? 18? 页 共? 22? 页 表 2-5 转轴机械加工工艺过程 工 序 号 1? 2? 工序 名称 下料 车 工序内容要求 不锈钢?1Cr17Ni2?F80 ? 1065? 基面 设备? 锯床? 光右端面,加工右端外形?F 77 ? 50?, 左 端 面 外 C6140?1; 三爪 右端打中心孔?F 5 ,保持有效总长? 形 ; 右 端 外 定心卡盘? 1060;光左端面,左端打中心孔?F 5 形?F? ? 50? 77 各尺寸留余量?2?3 毫米 右 端 外 形? C6140?1; 三爪 F 77 ? 50?; 定心卡盘;尾 左端中心孔? 顶尖? 3? 粗车 各端 长度 和直 径 粗车 (调 头) 检验? 热处 理 研磨 顶尖 孔 精车? 4? 各尺寸留余量?2?3 毫米 左端外形; 右端中心孔? C6140?1; 三爪 定心卡盘;尾 顶尖? 5? 6? 7? 固溶?HBS150—187? 研去两端?60°锥面的氧化皮? C6132; 三爪定 心卡盘;60° 锥面铸铁研具? C6140?1B;卡 箍、双顶尖? 8? F 35 ? 250? ,? F 42 ? 93? ,? 两端中心孔? F 50 ? 131?,?M?55 ??2?,?F 60 ? 29?, 过渡圆、倒角、形位公差及粗糙度要 求见零件图图纸 9? 精车 (调 头)? 精车 铣 功螺 纹 检验 钳 洗涤 吹净 称重 量? 总检 F 50 ? 84?,?F 55 ? 40?,?F 60 ? 38?,? 两端中心孔? F 72 ? 352?,过渡圆、倒角、形位公 差及粗糙度要求见零件图图纸 当圈槽 铣三处键槽? 左端螺纹?M16?深?22,孔深?24? 检验?8、9、10、11、12 工序尺寸? 去两键槽周边毛刺? 两端中心孔? C6140?1B;卡 箍;双顶尖? C6140?1B;卡 箍;双顶尖? X52K; 铣床机 用抱钳? 丝锥? 10? 11? 12? 13? 14? 15? 16? (按零件图) 江南大学毕业论文 总结和展望 翻阅了大量资料的基础上,对纺织浆料真空超细粉碎系统和关键技术装备进行了研究 和设计。其中重点做了一级高剪切均质机的设计,设计中许多地方参考了已有产品的设计 经验。 计中在决定其转轴和电动机的联结方式是,选择了其二者通过联轴器直接相联,如此 既减少了其所占空间,又提高了其工作效率;均质机的机筒和定子采取分离式,大大方便 了安装;对于密封的选用,考虑了多方面的因素,如卫生、装拆等,选择了机械密封、油 封和 O 型密封圈密封等。 由于自身知识水平及实践经验的限制,设计中有许多需要改进的地方,在次希望各位 老师给予各种指导意见。 相信随着国内高剪切均质机的迅速发展, 加之国内许多科研人员、 制造和使用厂家对剪切式均质机研制工作的重视,高剪切均质机会逐渐遍及生产和生活的 各个领域。 第? 20? 页 共? 22? 页 致谢 在设计过程中为本人做出指导的裘子剑老师,范丰老师等从生产实践到课题的设计计 算都付出了辛勤的汗水,在设计中更是给予了本人非常大的帮助。 由此,在此对以上老师及设计过程中给予过我帮助的各位同学表示诚挚的感谢 江南大学毕业论文 参考文献 [1]机械设计手册编委会.机械设计手册(1)[M].北京:机械工业出版社,2004. [2]机械设计手册编委会.机械设计手册(2)[M].北京:机械工业出版社,2004. [3]机械设计手册编委会.机械设计手册(3)[M].北京:机械工业出版社,2004. [4]机械设计手册编委会.机械设计手册(4)[M].北京:机械工业出版社,2004. [5]中国机械工程学会.中国机械设计大典(3)[M].江西科学技术出版社.2002. [6]刘鸿文.材料力学[M].北京:高等教育出版社,1992. [7]吴宗泽,罗圣国.机械设计—课程设计手册[M]北京:高等教育出版社,1999. [8]张裕中,戴宁,臧其梅.食品加工成套装备应用技术[M].江南大学. [10]杨诗斌,徐凯,张志森.高剪切机高均质机理研究及其在食品工业中的应用[J].粮食 加工食品机械,2002. [11]张克危.流体机械原理[M].北京:机械工业出版社,2000. [12]张文明,杨诗斌,宋明,张志森.剪切式均质机的结构与理论研究[J].食品与机械, 2001, (3). [13]蒋迪清,唐伟强.食品通用机械与设备[M].华南理工大学出版社. [14]杨可桢,程光蕴.机械设计基础[M].北京:高等教育出版社,1999. [15]胡长鹰,王有伦,陆振曦.高剪切均质机机理研究[J].化工装备技术,1997,18(1). 第? 22? 页 共? 22? 页

东欧赌场
东欧赌场| 公司简介 | 新闻中心 | 产品中心 | 售后服务 | 营销网络 | 联系我们 |